Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Food Environ Virol ; 15(3): 236-245, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306924

RESUMO

Enterobacter cloacae is a widespread opportunistic pathogen that causes urinary tract infection. The abuse of antibiotics enabled multidrug-resistant strains to spread. Bacteriophage therapy is a naturally, safe, and efficient alternative treatment technology against multi-resistant bacteria. In this study, a virulent phage vB_EclM_Q7622 (Q7622) was isolated from the sewage of Jiangcun poultry market in Guangzhou city. Transmission electron microscopy indicated that Q7622 had an icosahedral head (97.8 ± 5.6 nm in diameter) and a short, contractile tail (113.7 ± 4.5 nm). Its double-stranded DNA genome is composed of 173,871 bp with a GC content of 40.02%. It possesses 297 open reading frames and 9 tRNAs. No known virulence and resistance genes were detected, indicated that phage Q7622 could be used for pathogens prevention and control safely. Comparative genomic and phylogenetic analysis showed that Q7622 was highly similar to the phages vB_EclM_CIP9 and vB_EhoM-IME523. The highest nucleotide similarity between Q7622 and the similar phages in NCBI calculated by pyANI and VIRIDIC were 94.9% and 89.1% with vB_EhoM-IME523 respectively, below 95%. Thus, according to the result of nucleotide similarity calculation results, Q7622 was a novel virulent Enterobacter cloacae phage strain of the genus Kanagawavirus.


Assuntos
Bacteriófagos , Enterobacter cloacae , Enterobacter cloacae/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Nucleotídeos
3.
J Inflamm Res ; 16: 1979-1993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193070

RESUMO

Background: Microcystin-leucine-arginine (MC-LR) is the most abundant and most toxic variant of microcystin isomers. Various experiments have clearly shown that MC-LR has hepatotoxicity and carcinogenicity, but there are relatively few studies on its immune damage effect. In addition, numerous studies have shown that microRNAs (miRNAs) are involved in a wide range of biological processes. Do miRNAs also play a role in inflammatory response caused by microcystin exposure? This is the question to be answered in this study. Moreover, this study can also provides experimental evidence for the significance of miRNA applications. Objective: To investigate the effect of MC-LR on the expressions of miR-146a and pro/anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) and to further explore the role of miR-146a in the inflammatory responses caused by MC-LR. Methods: Serum samples from 1789 medical examiners were collected and detect the concentrations of MCs, and 30 serum samples with concentrations of MCs around P25, P50, and p75 were randomly selected for the detection of inflammatory factors. PBMCs from fresh peripheral blood extracted from these 90 medical examiners were subsequently tested for relative miR-146a expression. In vitro, the MC-LR were exposed to the PBMCs to detect the levels of inflammatory factors as well as the relative expression of miR-146a-5p. Then, a miRNA transfection assay was performed to verify the regulation of inflammatory factors by miR-146a-5p. Results: In population samples, the expression of inflammatory factors and miR-146a-5p increased with increasing MCs concentration. In vitro experiments showed that the expression of inflammatory factors and miR-146a-5p in PBMCs increased with MC-LR exposure time or exposure dose too. In addition, inhibiting the expression of miR-146a-5p in PBMCs reduced inflammatory factor levels. Conclusion: miR-146a-5p exerts a promoting effect on the MC-LR-induced inflammatory response by positively regulating inflammatory factor levels.

4.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111673

RESUMO

Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.

5.
J Proteomics ; 279: 104866, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918054

RESUMO

Vibrio parahaemolyticus, a sea-born bacterial pathogen, is a primary inducement of food-borne gastroenteritis. Previous studies have shown that non-coding small RNA plays a vital role in the regulation of multiple biological processes in pathogenic bacteria, especially autoaggregation and growth competition. However, the inherent mechanisms have not yet to be fully understood. As important regulators in Vibrios, the involvement of Qrr sRNAs in V. parahaemolyticus is largely unknown. Here, we carried out the Qrr5 deletion mutant and utilized a proteomic method to describe global proteomic alterations in response to Qrr5 deletion. A total of 297 significantly expressed proteins were determined between the Qrr5 deletion mutant and wild-type strain, among which 137 proteins were upregulated and 160 proteins were downregulated. The upregulated proteins principally participated in membrane transporters and signal transcription, while the downregulated proteins participated in the two-component system and transcription factor binding. Notably, transcriptional regulator LysR, outer membrane protein OmpA, and conjugal transfer protein TraA-related proteins were upregulated, causing the promotion of autoaggregation ability and growth competition ability against E. coli. This study provides insights into the regulatory network of sRNA in this bacterium, which will facilitate further explorations of important biological processes in pathogenic bacteria. SIGNIFICANCE: sRNA Qrr5 is an important regulator involved in bacterial multiple physiological processes, including auto-aggregation and growth competition among food-borne pathogens Vibrio parahaemolyticus. Here, utilizing a TMT-labeling proteomic approach, we identified 137 proteins were upregulated and 160 proteins were downregulated between the Qrr5 deletion mutant and wild-type strain. The upregulated proteins were involved in membrane transporters and signal transcription, while downregulated proteins were involved in the two-component system and transcription factor binding. Moreover, the LysR, OmpA, and TraA proteins were significantly upregulated, causing the promotion of autoaggregation and commensal growth competition ability. The mechanism of how Qrr5 regulates the targeted genes remains unclarified and need great efforts to explore.


Assuntos
Fenômenos Biológicos , Pequeno RNA não Traduzido , Vibrio parahaemolyticus , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Escherichia coli/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pequeno RNA não Traduzido/metabolismo
6.
Adv Sci (Weinh) ; 10(10): e2300282, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755201

RESUMO

Despite the success of small interfering RNA (siRNA) in clinical settings and its potential value in human immunodeficiency virus (HIV) therapy, the rapid clearance and absence of precise delivery to target cells still hinder the therapeutic effect of siRNA. Herein, a new system, which can escape immune recognition, has HIV-1 neutralizing capacity, and the ability to deliver siRNA specifically into HIV-1-infected cells, is constructed by functionalizing siRNA delivery lipid nanoparticles with the lymphocyte membrane and 12p1. The constructed system is shown to escape uptake by the mononuclear phagocyte system. The constructed system exhibits strong binding ability with gp120, thus displaying distinguished neutralizing breadth and potency. The constructed system neutralizes all tested HIV-1 pseudotyped viruses with a geometric mean 80% inhibitory concentration (IC80) of 29.75 µg mL-1 and inhibits X4-tropic HIV-1 with an IC80 of 64.20 µg mL-1 , and R5-tropic HIV-1 with an IC80 of 16.39 µg mL-1 . The new system also specifically delivers siRNA into the cytoplasm of HIV-1-infected cells and exhibits evident gene silencing of tat and rev. Therefore, this new system can neutralize HIV-1 and deliver siRNA selectively into HIV-1-infected cells and may be a promising therapeutic candidate for the precise therapy of HIV.


Assuntos
Infecções por HIV , HIV-1 , Nanopartículas , Humanos , HIV-1/genética , HIV-1/metabolismo , RNA Interferente Pequeno/metabolismo , Linfócitos , Infecções por HIV/terapia , Infecções por HIV/genética
8.
Mar Pollut Bull ; 186: 114276, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437125

RESUMO

Vibrio parahaemolyticus outbreaks frequently occur, causing gastrointestinal sickness owing to the consumption of aquatic foods by various virulence factors; however, the mechanism of pathogenesis is still unknown. In this study, a non-typical strain of V. parahaemolyticus, named VP353, was isolated from shrimp in China. Its comparative genome and transcriptome after infection with Caco-2 cells were examined to illustrate the mechanisms of its pathogenesis. VP353 was a tdh-trh- strain but uncommonly manifested robust cytotoxicity towards Caco-2 cells. Compared with the standard strain RIMD2210633, VP353 harbored alpha-hemolysins (hlyA, hlyB, hlyC, and hlyD) was first reported in V. parahaemolyticus and showed high diversity in the T3SS2 gene cluster. Moreover, the expression of flagella, T2SS, quorum sensing-related genes, hlyA, hlyC were up-regulated, and hlyB, hlyD were down-regulated. In summary, our results demonstrate that some novel virulence factors contribute to the pathogenesis of V. parahaemolyticus infection.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Células CACO-2 , Perfilação da Expressão Gênica , Proteínas Hemolisinas/genética , Alimentos Marinhos/análise , Fatores de Virulência/genética
9.
Environ Res ; 219: 115110, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574793

RESUMO

Soil acidification is the main cause for aggravation of soil cadmium (Cd) pollution. Biochar treatment can increase the soil pH and decrease the Cd availability in soils. However, there is limited information in literature on the comprehensive assessment of the response of Cd fractions to biochar. Therefore, in the present meta-analysis study, we evaluate the response of Cd fractions to biochar application in soils with different pH and to further examine the effect of physicochemical properties of biochar on Cd. Results from the overall analysis indicated that biochar treatment increased the soil pH by 7.0%, thereby decreasing the amount of available Cd (37.3%). In acidic soil, biochar significantly reduced the acid-soluble fraction (Acid-Cd) of Cd by 36.8%, while Oxidizable fraction of Cd (Oxid-Cd, 20.9%) and Residual fraction of Cd (Resid-Cd, 22.2%) were significantly increased. In neutral soils, only Acid-Cd was significantly reduced (33.0%) in the presence of biochar. In alkaline soils, biochar caused significant reduction in Acid-Cd of 12.4% and an increase in Oxid-Cd and Resid-Cd of 26.6% and 47.8%, respectively. Further, our findings showed that biochar with cation exchange capacity >100 cmol+/kg effectively decreased Acid-Cd (32.4%), while biochar with the percentage of hydrogen <2% was more contributory in increasing Resid-Cd (64.3%). These results demonstrate the importance of soil pH in regulating the biological effectiveness of Cd in soil and the complexation between the functional groups of biochar and Cd, and provide key information for the remediation of Cd pollution in soils with different pH by biochar.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química , Concentração de Íons de Hidrogênio
10.
Front Pharmacol ; 13: 1027901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339599

RESUMO

Introduction: The timely alleviation of symptoms is essential for managing community-acquired pneumonia (CAP). Juhongtanke oral solution is a traditional marketed Chinese patent medicine believed to ease CAP symptoms. The currently available evidence is based on a few retrospective studies of patients with various types of pneumonia, whereas robust randomized controlled trials (RCTs) that support this notion are lacking. Material and methods: In this multi-center, prospective RCT, patients were randomly allocated to receive routine treatment alone or a combination of Juhongtanke oral solution (20 mL q8h) for 5 days and maintained for an additional 3-day safety observation period. The primary outcome was Breathlessness, Cough, and Sputum Scale (BCSS) score evaluated on day 5. Secondary outcomes included the evaluation of cough and dyspnea items in the Visual Analogue Scale (VAS) from days 1-5, remission rate in BCSS and VAS during the treatment course, and the length of hospitalization and in-hospital mortality. Results: Of 272 patients assessed for eligibility, 240 were enrolled in the study (n =120 per group). The mean difference in BCSS evaluated on day 5 was a median 1 point [95%CI (1.00, 2.00)], significantly lower in the treatment group compared with the control group (p < 0.001). Similar results were observed in VAS on day 5, with statistics of a median 2 points [95%CI (1.40, 2.50)] in the cough item and a median 1 point [95%CI (0.50, 2.00)] in the dyspnea item, significantly lower in the treatment group compared with the control group (both p < 0.001). The treatment group had a favorable outcome in BCSS and VAS remission rate assessments compared with the control group, with 99.50% vs. 89.17% in BCSS (p = 0.01), 98.33% vs. 75% in the cough item of VAS (p < 0.001), and 88.33% vs. 62.50% in the dyspnea item of VAS (p < 0.001), respectively. No notable adverse effects were observed during the study. No differences were observed in the length of hospitalization between groups (with a median of 7 days for both groups, p = 0.871). Conclusion: Juhongtanke oral solution may be considered to alleviate the clinical symptoms of CAP.

11.
Microorganisms ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296357

RESUMO

Small non-coding RNAs (sRNAs) in bacteria are important regulatory molecules for controlling virulence. In Vibrio spp., Qrr sRNAs are critical for quorum-sensing pathways and regulating the release of some virulence factors. However, the detailed role of Qrr sRNAs in the virulence of Vibrio parahaemolyticus remains poorly understood. In this study, we identified a Vibrio sRNA Qrr5 that positively regulates cytotoxicity and adherence in Caco-2 cells by primarily regulating the T3SS1 gene cluster. A number of 185, 586, 355, and 74 differentially expressed genes (DEGs) detected at 0, 2, 4, and 6 h post-infection, respectively, were mainly associated with ABC transporters and two-component system pathways. The DEGs exhibited a dynamic change in expression at various time points post-infection owing to the deletion of Qrr5. Accordingly, 17 related genes were identified in the co-expression network, and their interaction with Qrr5 was determined based on weighted co-expression network analysis during infection. Taken together, our results provide a comprehensive transcriptome profile of V. parahaemolyticus during infection in Caco-2 cells.

12.
Pharmaceutics ; 14(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36145566

RESUMO

As one of the most frequent complications of critical illness, acute lung injury (ALI) carries a high risk of clinical morbidity and mortality. Cepharanthine (CPA) has significant anti-inflammatory activity, however, due to poor water solubility, low bioavailability, and short half-life, it fails to provide effective clinical management measures. Here, we explored the flexibility of an erythrocyte-anchoring strategy using CPA-encapsulated chitosan-coating nanoparticles (CPA-CNPs) anchored onto circulating erythrocytes for the treatment of ALI. CPA-CNPs adhered to erythrocytes successfully (E-CPA-CNPs) and exhibited high erythrocyte adhesion efficiency (>80%). Limited toxicity and favorable biocompatibility enabled further application of E-CPA-CNPs. Next, the reticuloendothelial system evasion features were analyzed in RAW264.7 macrophages and Sprague-Dawley rats. Compared with bare CPA-CNPs, erythrocyte-anchored CNPs significantly decreased cellular uptake in immune cells and prolonged circulation time in vivo. Notably, the erythrocyte-anchoring strategy enabled CNPs to be delivered and accumulated in the lungs (up to 6-fold). In the ALI mouse model, E-CPA-CNPs attenuated the progression of ALI by inhibiting inflammatory responses. Overall, our results demonstrate the outstanding advantages of erythrocyte-anchored CPA-CNPs in improving the pharmacokinetics and bioavailability of CPA, which offers great promise for a lung-targeted drug delivery system for the effective treatment of ALI.

13.
Viruses ; 14(8)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893675

RESUMO

In the present study, a novel lytic Vibrio parahaemolyticus phage, vB_VpaP_DE10, was isolated from sewage samples collected in Guangzhou city, China. Transmission electron microscopy revealed that phage vB_VpaP_DE10 has an icosahedral head (52.4 ± 2.5 nm) and a short non-contracted tail (21.9 ± 1.0 nm). Phage vB_VpaP_DE10 lysed approximately 31% (8/26) of the antibiotic-resistant V. parahaemolyticus strains tested. A one-step growth curve showed that phage vB_VpaP_DE10 has a relatively long latency time of 25 min and a burst size of ~19 PFU per cell. The genome of phage vB_VpaP_DE10 is a 42,871-bp-long dsDNA molecule with a G + C content of 49.19% and is predicted to contain 46 open reading frames, 26 of which are predicted to be related to functions such as phage structure, packaging, host lysis, and DNA metabolism. Sequence comparisons suggested that vB_VpaP_DE10 is a member of the genus Maculvirus within the family Autographiviridae. Morphological and genomic analysis indicated that vB_VpaP_DE10 is a novel V. parahaemolyticus phage.


Assuntos
Bacteriófagos , Vibrio parahaemolyticus , Bacteriófagos/genética , Composição de Bases , Genoma Viral , Genômica , Fases de Leitura Aberta , Vibrio parahaemolyticus/virologia
14.
Medicine (Baltimore) ; 101(26): e29314, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777055

RESUMO

BACKGROUND: Transdermal delivery is very important in pharmaceutics. However, the barrier function of the stratum corneum hinders drugs absorption. How to improve transdermal delivery efficiency is a hot topic. The key advantages of physical technologies are their wide application for the delivery of previously nonappropriate transdermal drugs, such as proteins, peptides, and hydrophilic drugs. Based on the improved permeation of drugs delivered via multiple physical techniques, many more diseases may be treated, and transdermal vaccinations become possible. However, their wider application depends on the related convenient and portable devices. Combined products comprising medicine and devices represent future commercial directions of artificial intelligence and 3D printing. METHODS: A comprehensive search about transdermal delivery assisted by physical techniques has been carried out on Web of Science, EMBASE database, PubMed, Wanfang Database, China National Knowledge Infrastructure, and Cochrane Library. The search identified and retrieved the study describing multiple physical technologies to promote transdermal penetration. RESULTS: Physical technologies, including microneedles, lasers, iontophoresis, sonophoresis, electroporation, magnetophoresis, and microwaves, are summarized and compared. The characteristics, mechanism, advantages and disadvantages of physical techniques are clarified. The individual or combined applicable examples of physical techniques to improve transdermal delivery are summarized. CONCLUSION: This review will provide more useful guidance for efficient transdermal delivery. More therapeutic agents by transdermal routes become possible with the assistance of various physical techniques.


Assuntos
Inteligência Artificial , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Humanos , Iontoforese/métodos , Preparações Farmacêuticas/metabolismo , Pele/metabolismo
15.
Gels ; 8(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735708

RESUMO

In recent years, hydrogel-based research in biomedical engineering has attracted more attention. Cellulose-based hydrogels have become a research hotspot in the field of functional materials because of their outstanding characteristics such as excellent flexibility, stimulus-response, biocompatibility, and degradability. In addition, cellulose-based hydrogel materials exhibit excellent mechanical properties and designable functions through different preparation methods and structure designs, demonstrating huge development potential. In this review, we have systematically summarized sources and types of cellulose and the formation mechanism of the hydrogel. We have reviewed and discussed the recent progress in the development of cellulose-based hydrogels and introduced their applications such as ionic conduction, thermal insulation, and drug delivery. Also, we analyzed and highlighted the trends and opportunities for the further development of cellulose-based hydrogels as emerging materials in the future.

16.
Int J Pharm X ; 4: 100119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35663355

RESUMO

Rivaroxaban (RIV) is a direct Factor Xa inhibitor anticoagulant, but the oral bioavailability of RIV is estimated to be only 60% due to its poor solubility. The aim of the present study was to improve the solubility and bioavailability of RIV. Five cocrystals-p-hydroxybenzoic acid (HBA), 2,4-dihydroxybenzoic acid (DBA), nicotinamide (NA), isonicotinamide (IA), and succinic acid (SA)-were used as cofomers and were successfully obtained and characterized by powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectra. RIV-DBA and RIV-HBA cocrystals showed obvious improvements in solubility, dissolution (under sink conditions), and intrinsic dissolution rates versus RIV. Moreover, the dissolution of RIV-HBA, RIV-DBA, and RIV-SA cocrystals under non-sink conditions showed obvious "spring and parachute" patterns. The in vitro permeability levels in a Caco-2 cell model of RIV-DBA and RIV-IA cocrystals were significantly improved versus RIV. Pharmacokinetic studies in beagle dogs showed that RIV-DBA and RIV-HBA cocrystals had higher bioavailability than RIV. The enhancements in solubility and bioavailability indicate the potential of RIV cocrystals as a better candidate for the treatment of thrombosis versus RIV.

17.
Int J Pharm ; 619: 121719, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35390488

RESUMO

Recent studies have demonstrated that ivermectin (IVM) exhibits antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of coronavirus disease 2019 (COVID-19). However, the repurposing of IVM for the treatment of COVID-19 has presented challenges primarily due to the low IVM plasma concentration after oral administration, which was well below IC50. Here, a red blood cell (RBC)-hitchhiking strategy was used for the targeted delivery of IVM-loaded nanoparticles (NPs) to the lung. IVM-loaded poly (lactic-co-glycolic acid) (PLGA) NPs (IVM-PNPs) and chitosan-coating IVM-PNPs (IVM-CSPNPs) were prepared and adsorbed onto RBCs. Both RBC-hitchhiked IVM-PNPs and IVM-CSPNPs could significantly enhance IVM delivery to lungs, improve IVM accumulation in lung tissue, inhibit the inflammatory responses and finally significantly alleviate the progression of acute lung injury. Specifically, the redistribution and circulation effects were related to the properties of NPs. RBC-hitchhiked cationic IVM-CSPNPs showed a longer circulation time, slower accumulation and elimination rates, and higher anti-inflammatory activities than RBC-hitchhiked anionic IVM-PNPs. Therefore, RBC-hitchhiking provides an alternative strategy to improve IVM pharmacokinetics and bioavailability for repurposing of IVM to treat COVID-19. Furthermore, according to different redistribution effects of different NPs, RBC-hitchhiked NPs may achieve various accumulation rates and circulation times for different requirements of drug delivery.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas , Eritrócitos , Humanos , Ivermectina , Pulmão , SARS-CoV-2
18.
Front Pharmacol ; 13: 836356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370741

RESUMO

ST-246 is an oral drug against pathogenic orthopoxvirus infections. An intravenous formulation is required for some critical patients. A ternary complex of ST-246/meglumine/hydroxypropyl-ß-cyclodextrin with well-improved solubility was successfully developed in our institute. The aim of this study was to achieve a reasonable intravenous infusion regimen of this novel formulation by a robust PBPK model based on preclinical pharmacokinetic studies. The pharmacokinetics of ST-246 after intravenous injection at different doses in rats, dogs, and monkeys were conducted to obtain clearances. The clearance of humans was generated by using the allometric scaling approach. Tissue distribution of ST-246 was conducted in rats to obtain tissue partition coefficients (K p ). The PBPK model of the rat was first built using in vivo clearance and K p combined with in vitro physicochemical properties, unbound fraction, and cyclodextrin effect parameters of ST-246. Then the PBPK model was transferred to a dog and monkey and validated simultaneously. Finally, pharmacokinetic profiles after IV infusion at different dosages utilizing the human PBPK model were compared to the observed oral PK profile of ST-246 at therapeutic dosage (600 mg). The mechanistic PBPK model described the animal PK behaviors of ST-246 via intravenous injection and infusion with fold errors within 1.2. It appeared that 6h-IV infusion at 5 mg/kg BID produced similar Cmax and AUC as oral administration at 600 mg. A PBPK model of ST-246 was built to achieve a reasonable regimen of IV infusion for the treatment of severe smallpox, which will facilitate the clinical translation of this novel formulation.

19.
Int J Food Microbiol ; 369: 109615, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35299049

RESUMO

Bacillus cereus is a common foodborne pathogen that causes vomiting and diarrheal symptoms. Due to its spore-forming ability, B. cereus can resist physical sterilization and possess a relatively high contamination level in dairy products; therefore, it is necessary to develop an efficient strategy to control the growth of B. cereus. In this study, a novel bacteriophage, named DLn1, was isolated and characterized, and its endolysin was expressed. Morphological and genomic analyses revealed that the phage is a new species belonging to the Northropvirinae subfamily of the Salasmaviridae family. The life cycle and stability assays showed that the phage DLn1 exhibited a short latent period (15 min) and high burst size (618 plaque-forming units (PFU)/cell) and was tolerant to a wide range of pH (4-10) and temperature (4-55 °C) conditions. This lytic phage had narrow but specific host range to B. cereus strains, and could effectively reduce the number of B. cereus in milk within 6 h. More interestingly, the purified endolysin of phage DLn1 had a much wider lytic range and the inhibitory effect against B. cereus in milk was more efficient. Taken together, the new phage DLn1 and its endolysin could be promising biocontrol agents against B. cereus in dairy products.


Assuntos
Fagos Bacilares , Animais , Fagos Bacilares/genética , Bacillus cereus , Endopeptidases/farmacologia , Leite
20.
Foods ; 11(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35159414

RESUMO

Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 µmol·L-1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA